Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256506

RESUMO

BackgroundImmunity after SARS-CoV-2 infection or vaccination has been threatened by recently emerged SARS-CoV-2 variants. A systematic summary of the landscape of neutralizing antibodies against emerging variants is needed. MethodsWe systematically searched PubMed, Embase, Web of Science, and 3 pre-print servers for studies that evaluated neutralizing antibodies titers induced by previous infection or vaccination against SARS-CoV-2 variants and comprehensively collected individual data. We calculated lineage-specific GMTs across different study participants and types of neutralization assays. FindingsWe identified 56 studies, including 2,483 individuals and 8,590 neutralization tests, meeting the eligibility criteria. Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The estimated neutralization reductions for B.1.351 compared to lineage B were 240.2-fold (95% CI: 124.0-465.6) reduction for non-replicating vector platform, 4.6-fold (95% CI: 4.0-5.2) reduction for RNA platform, and 1.6-fold (95% CI: 1.2-2.1) reduction for protein subunit platform. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9). InterpretationOur findings indicate that the antibody response established by natural infection or vaccination might be able to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Standardized protocols for neutralization assays, as well as updating immune-based prevention and treatment, are needed. FundingChinese National Science Fund for Distinguished Young Scholars Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSeveral newly emerged SARS-CoV-2 variants have raised significant concerns globally, and there is concern that SARS-CoV-2 variants can evade immune responses that are based on the prototype strain. It is not known to what extent do emerging SARS-CoV-2 variants escape the immune response induced by previous infection or vaccination. However, existing studies of neutralizing potency against SARS-CoV-2 variants are based on limited numbers of samples and lack comparability between different laboratory methods. Furthermore, there are no studies providing whole picture of neutralizing antibodies induced by prior infections or vaccination against emerging variants. Therefore, we systematically reviewed and quantitively synthesized evidence on the degree to which antibodies from previous SARS-CoV-2 infection or vaccination effectively neutralize variants. Added value of this studyIn this study, 56 studies, including 2,483 individuals and 8,590 neutralization tests, were identified. Antibodies from natural infection or vaccination are likely to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Lineage B.1.351 escaped natural-infection-mediated neutralization the most, with GMT of 79.2 (95% CI: 68.5-91.6), while neutralizing antibody titers against the B.1.1.7 variant were largely preserved (254.6, 95% CI: 214.1-302.8). Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The neutralizing antibody response after vaccinating with non-replicating vector vaccines against lineage B.1.351 was worse than responses elicited by vaccines on other platforms, with levels lower than that of individuals who were previously infected. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9). Implications of all the available evidenceOur findings indicate that antibodies from natural infection of the parent lineage of SARS-CoV-2 or vaccination may be less able to neutralize some emerging variants, and antibody-based therapies may need to be updated. Furthermore, standardized protocols for neutralizing antibody testing against SARS-CoV-2 are needed to reduce lab-to-lab variations, thus facilitating comparability and interpretability across studies.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20223545

RESUMO

To examine innate immune responses in early SARS-CoV-2 infection that may change clinical outcomes, we compared nasopharyngeal swab data from 20 virus-positive and 20 virus-negative individuals. Multiple innate immune-related and ACE-2 transcripts increased with infection and were strongly associated with increasing viral load. We found widespread discrepancies between transcription and translation. Interferon proteins were unchanged or decreased in infected samples suggesting virally-induced shut-off of host anti-viral protein responses. However, IP-10 and several interferon-stimulated gene proteins increased with viral load. Older age was associated with modifications of some effects. Our findings may characterize the disrupted immune landscape of early disease.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20192773

RESUMO

BackgroundA rapidly increasing number of serological surveys for anti-SARS-CoV-2 antibodies have been reported worldwide. A synthesis of this large corpus of data is needed. PurposeTo evaluate the quality of serological studies and provide a global picture of seroprevalence across demographic and occupational groups, and to provide guidance for conducting better serosurveys. Data sourcesWe searched PubMed, Embase, Web of Science, and 4 pre-print servers for English-language papers published from December 1, 2019 to September 25, 2020. Study selectionSerological studies evaluating SARS-CoV-2 seroprevalence in humans. Data extractionTwo investigators independently extracted data from studies. Data SynthesisMost of 230 serological studies, representing tests in >1,400,000 individuals, identified were of low quality based on a standardized study quality scale. In the 51 studies of higher quality, high-risk healthcare workers had higher seroprevalence of 17.1% (95% CI: 9.9-24.4%), compared to low-risk healthcare workers and general population of 5.4% (0.7-10.1%) and 5.3% (4.2-6.4%). Seroprevalence varied hugely across WHO regions, with lowest seroprevalence of general population in Western Pacific region (1.7%, 0.0-5.0%). Generally, the young (<20 years) and the old ([≥]65 years) were less likely to be seropositive compared to middle-aged (20-64 years) populations. Seroprevalence correlated with clinical COVID-19 reports, with pooled average of 7.7 (range: 2.0 to 23.1) serologically-detected-infections per confirmed COVID-19 case. LimitationsSome heterogeneity cannot be well explained quantitatively. ConclusionsThe overall quality of seroprevalence studies examined was low. The relatively low seroprevalence among general populations suggest that in most settings, antibody-mediated herd immunity is far from being reached. Given the relatively narrow range of estimates of the ratio of serologically-detected infections to confirmed cases across different locales, reported case counts may help provide insights into the true proportion of the population infected. Primary Funding sourceNational Science Fund for Distinguished Young Scholars (PROSPERO: CRD42020198253).

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20148510

RESUMO

Prompt identification of cases is critical for slowing the spread of COVID-19. However, many areas have faced diagnostic testing shortages, requiring difficult decisions to be made regarding who receives a test, without knowing the implications of those decisions on population-level transmission dynamics. Clinical prediction rules (CPRs) are commonly used tools to guide clinical decisions. We used data from electronic health records to develop a parsimonious 5-variable CPR to identify those who are most likely to test positive, and found that its application to prioritize testing increases the proportion of those testing positive in settings of limited testing capacity. To consider the implications of these gains in daily case detection on the population level, we incorporated testing using the CPR into a compartmentalized disease transmission model. We found that prioritized testing led to a delayed and lowered infection peak (i.e. "flattens the curve"), with the greatest impact at lower values of the effective reproductive number (such as with concurrent social distancing measures), and when higher proportions of infectious persons seek testing. Additionally, prioritized testing resulted in reductions in overall infections as well as hospital and intensive care unit (ICU) burden. In conclusion, we present a novel approach to evidence-based allocation of limited diagnostic capacity, to achieve public health goals for COVID-19. One Sentence SummaryA clinical prediction rule to prioritize SARS-CoV-2 testing improves daily case detection, flattens and delays the curve, and reduces hospital burden.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20092031

RESUMO

The United States (US), which is currently the epicenter for the COVID-19 pandemic, is a country whose demographic composition differs from that of other highly-impacted countries. US-based descriptions of SARS-CoV-2 infections have, for the most part, focused on patient populations with severe disease, captured in areas with limited testing capacity. The objective of this study is to compare characteristics of positive and negative SARS-CoV-2 patients, in a population primarily comprised of mild and moderate infections, identified from comprehensive population-level testing. Here, we extracted demographics, comorbidities, and vital signs from 20,088 patients who were tested for SARS-CoV-2 at University of Utah Health clinics, in Salt Lake County, Utah; and for a subset of tested patients, we performed manual chart review to examine symptoms and exposure risks. To determine risk factors for testing positive, we used logistic regression to calculate the odds of testing positive, adjusting for symptoms and prior exposure. Of the 20,088 individuals, 1,229 (6.1%) tested positive for SARS-CoV-2. We found that Non-White persons were more likely to test positive compared to non-Hispanic Whites (adjOR=1.1, 95% CI: 0.8, 1.6), and that this increased risk is more pronounced among Hispanic or Latino persons (adjOR=2.0, 95%CI: 1.3, 3.1). However, we did not find differences in the duration of symptoms nor type of symptom presentation between non-Hispanic White and non-White individuals. We found that risk of hospitalization increases with age (adjOR=6.9 95% CI: 2.1, 22.5 for age 60+ compared to 0-19), and additionally show that younger individuals (aged 019), were underrepresented both in overall rates of testing as well as rates of testing positive. We did not find major race/ethnic differences in hospitalization rates. In this analysis of predominantly non-hospitalized individuals tested for SARS-CoV-2, enabled by expansive testing capacity, we found disparities in both testing and SARS-CoV-2 infection status by race/ethnicity and by age. Further work on addressing racial and ethnic disparities, particularly among Hispanic/Latino communities (where SARS-CoV-2 may be spreading more rapidly due to increased exposure and comparatively reduced testing), will be needed to effectively combat COVID-19 in the US.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...